首页> 外文OA文献 >Think Globally, Embed Locally --- Locally Linear Meta-embedding of Words
【2h】

Think Globally, Embed Locally --- Locally Linear Meta-embedding of Words

机译:全球思考,本地嵌入---词语的局部线性元嵌入

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Distributed word embeddings have shown superior performances in numerousNatural Language Processing (NLP) tasks. However, their performances varysignificantly across different tasks, implying that the word embeddings learntby those methods capture complementary aspects of lexical semantics. Therefore,we believe that it is important to combine the existing word embeddings toproduce more accurate and complete \emph{meta-embeddings} of words. For thispurpose, we propose an unsupervised locally linear meta-embedding learningmethod that takes pre-trained word embeddings as the input, and produces moreaccurate meta embeddings. Unlike previously proposed meta-embedding learningmethods that learn a global projection over all words in a vocabulary, ourproposed method is sensitive to the differences in local neighbourhoods of theindividual source word embeddings. Moreover, we show that vector concatenation,a previously proposed highly competitive baseline approach for integrating wordembeddings, can be derived as a special case of the proposed method.Experimental results on semantic similarity, word analogy, relationclassification, and short-text classification tasks show that ourmeta-embeddings to significantly outperform prior methods in several benchmarkdatasets, establishing a new state of the art for meta-embeddings.
机译:分布式词嵌入在许多自然语言处理(NLP)任务中显示了卓越的性能。但是,它们在不同任务之间的表现差异很大,这意味着这些方法学习的词嵌入捕捉了词法语义的互补方面。因此,我们认为,重要的是要结合现有的词嵌入,以产生更准确,完整的词\ emph {meta-embeddings}。为此,我们提出了一种无监督的局部线性元嵌入学习方法,该方法将预训练的词嵌入作为输入,并产生更准确的元嵌入。与先前提出的元嵌入学习方法可以学习词汇表中所有单词的全局投影不同,我们提出的方法对单个源词嵌入的局部邻域差异敏感。此外,我们表明向量串联是一种先前提出的竞争性很强的集成词嵌入的基线方法,可以作为该方法的特例而派生。语义相似度,词类比,关系分类和短文本分类任务的实验结果表明: ourmeta嵌入在多个基准数据集中的性能明显优于现有方法,从而建立了元嵌入的最新技术水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号